E4981B Capacitance Meter

Table of Contents

Definitions and Specifications	3
Measurement Display Ranges	5
Available Measurement Ranges	5
Accuracy When Ambient Temperature Exceeds the Range of 18 to 28 °C (Typical)	8
Accuracy When An Alternative Current Magnetic Field is Applied	g
Supplemental Information	16
Measurement Signals	16
Measurement Time	16
Display Time	17
Measurement Data Transfer Time	18
Measurement Assistance Functions	19
General Specifications	22
EMC, Safety, Environment and Compliance	25
Sample Calculation of Measurement Accuracy	26
When Measurement Parameter is Cp-D (or Cs-D)	27
When measurement parameter is Cp-Q (or Cs-Q)	28
When measurement parameter is Cp-G	28
When measurement parameter is Cp-Rp	29
When measurement parameter is Cs-Rs	30

Definitions and Specifications

This document provides specifications and supplemental information for the Keysight Technologies, Inc. E4981B capacitance meter. All specifications apply to the conditions of a 0 °C to 45 °C temperature range, unless otherwise stated, and 30 minutes after the instrument has been turned on.

Table 1.

Definitions

Specification (spec.)	Warranted performance. Specifications include guard bands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. Supplemental information is intended to provide information that is helpful for using the instrument but that is not guaranteed by the product warranty.
Typical (typ.)	Describes performance that will be met by a minimum of 80% of all products. It is not guaranteed by the product warranty.
Nominal (nom.)	A general descriptive term that does not imply a level of performance.

Table 2.

Definitions

Option dependencies	The available frequency is defined as follows. E4981B-001: 120 Hz/1 kHz/1 MHz/1 MHz ± 1%/1 MHz ± 2% E4981B-002: 120 Hz/1 kHz
	The information regarding "Frequency 1 MHz/1 MHz ± 1%/1 MHz ± 2%" in specifications, supplemental and general information in not valid for the E4981B-002.

Table 3.

Basic specifications

Measurement parameters	Cp-D, Cp-Q, Cp-Rp, Cp-GCs-D, Cs-Q, Cs-Rs
	where
	Cp: Capacitance value measured using the parallel equivalent circuit model Cs: Capacitance value measured using the series equivalent circuit model D: Dissipation factor Q: Quality factor (inverse of D) G: Equivalent parallel conductance measured using the parallel equivalent circuit model Rp: Equivalent parallel resistance measured using the parallel equivalent circuit model Rs: Equivalent series resistance measured using the series equivalent circuit model

Table 4.

Specifications

Measurement signals					
Frequency		requencies			120 Hz 1 kHz 1 MHz 0.98 MHz (1 MHz – 2%) 0.99 MHz (1 MHz – 1%) 1.01 MHz (1 MHz + 1%) 1.02 MHz (1 MHz + 2%) ±0.02%
Level	Accuracy Range Resolution				0.1 V to 1 V 0.01 V
	Accuracy				±5%
Output mode		us or synchro	nnus		±370
Source delay time ¹	Range	us or syntem	nious		0 to 1 s
course using time	Resolution			0.1 ms	
Measurement cable lengths Measurement time selection Measurement range selection	0 m, 1 m, 2 m 5 speeds measurement time mode N = 1, 2, 4, 6, 8 each mode, refer to Table 22 "Measurement time." Auto, Hold				
Measurement range					
Measurement signal frequency: 120 Hz	10 nF 220 nF 4.7 μF 100 μF	22 nF 470 nF 10 μF 220 μF	47 nF 1 μF 22 μF 470 μF	100 nF 2.2 μF 47 μF 1 mF	
Measurement signal frequency: 1 kHz	100 pF 2.2 nF 47 nF 1 µF 22 µF	220 pF 4.7 nF 100 nF 2.2 μF 47 μF	470 pF 10 nF 220 nF 4.7 μF 100 μF	1 nF 22 nF 470 nF 10 μF	
Measurement signal frequency: 1 MHz / 1 MHz \pm 1% / 1 MHz \pm 2%	1 pF 22 pF 470 pF	2.2 pF 47 pF 1 nF	4.7 pF 100 pF	10 pF 220 pF	

For information on measurable range in each measurement mode, refer to "Available measurement ranges" (Tables 7 through 9).

Table 5.

Averaging	
Range	1 to 256 measurements
Resolution	1
Trigger mode:	Internal trigger (Int), Manual trigger (Man), External trigger (Ext), GPIB/USB/LAN trigger (Bus)
Trigger delay time	
Range	0 to 1 s
Resolution	0.1 ms

¹ Source delay time is effective when output mode is set to Synchronous mode.

4

Measurement display ranges

Table 6 shows the range of the measured value that can be displayed on the screen.

Table 6. Allowable measured value display range

Parameter	Measurement display range
Cs, Cp	±1.000000 aF to 999.9999 EF
D	±0.000001 to 9.999999
Q	±0.01 to 99999.99
Rs, Rp	± 1.000000 aΩ to 999.9999 EΩ
G	±1.000000 aS to 999.9999 ES
Δ%	±0.0001 % to 999.9999 %
a: 1 x 10-18, E: 1 x 10 ¹⁸	

Available measurement ranges

Tables 7 through 9 show recommended measurement ranges (recommended for accurate measurement) and significant measurement ranges (ranges that do not cause overload) for each measurement value under the condition D (dissipation factor) \leq 0.5.

Table 7. Measurable capacitance ranges when measurement frequency is 120 Hz

Measurement range setting	Recommended measurement range	Significant measurement range
10 nF	0 F to 15 nF	0 F to 15 nF
22 nF	15 nF to 33 nF	0 F to 33 nF
47 nF	33 nF to 68 nF	0 F to 68 nF
100 nF	68 nF to 150 nF	0 F to 150 nF
220 nF	150 nF to 330 nF	0 F to 330 nF
470 nF	330 nF to 680 nF	0 F to 680 nF
1 μF	680 nF to 1.5μF	0 F to 1.5 μF
2.2 μF	1.5 μF to 3.3 μF	0 F to 3.3 μF
4.7 μF	3.3 μF to 6.8 μF	0 F to 6.8 μF
10 μF	6.8 μF to 15 μF	0 F to 15 μF
22 μF	15 μF to 33 μF	0 F to 33 μF
47 μF	33 μF to 68 μF	0 F to 68 μF
100 μF	68 μF to 150 μF	0 F to 150 μF
220 μF	150 μF to 330 μF	0 F to 330 μF
470 μF	330 μF to 680 μF	0 F to 680 μF
1 mF	680 μF to 2 mF	0 F to 2 mF

Table 8. Measurable capacitance ranges when measurement frequency is 1 kHz

Measurement range setting	Recommended measurement range	Significant measurement range
100 pF	0 pF to 150 pF	0 F to 150 pF
220 pF	150 pF to 330 pF	0 F to 330 pF
470 pF	330 pF to 680 pF	0 F to 680 pF
1 nF	680 pF to 1.5 nF	0 F to 1.5 nF
2.2 nF	1.5 nF to 3.3 nF	0 F to 3.3 nF
4.7 nF	3.3 nF to 6.8 nF	0 F to 6.8 nF
10 nF	6.8 nF to 15 nF	0 F to 15 nF
22 nF	15 nF to 33 nF	0 F to 33 nF
47 nF	33 nF to 68 nF	0 F to 68 nF
100 nF	68 nF to 150 nF	0 F to 150 nF
220 nF	150 nF to 330 nF	0 F to 330 nF
470 nF	330 nF to 680 nF	0 F to 680 nF
1 μF	680 nF to 1.5 μF	0 F to 1.5 μF
2.2 μF	1.5 μF to 3.3 μF	0 F to 3.3 μF
4.7 μF	3.3 μF to 6.8 μF	0 F to 6.8 μF
10 μF	6.8 μF to 15 μF	0 F to 15 μF
22 μF	15 μF to 33 μF	0 F to 33 μF
47 μF	33 μF to 68 μF	0 F to 68 μF
100 μF	68 μF to 200 μF	0 F to 200 μF

Table 9. Measurable capacitance ranges when measurement frequency is 1 MHz, 1 MHz ±1%, 1 MHz ±2%

Measurement range setting	Recommended measurement range	Significant measurement range
1 pF	0 F to 1.5 pF	0 F to 1.5 pF
2.2 pF	1.5 pF to 3.3 pF	0 F to 3.3 pF
4.7 pF	3.3 pF to 6.8 pF	0 F to 6.8 pF
10 pF	6.8 pF to 15 pF	0 F to 15 pF
22 pF	15 pF to 33 pF	0 F to 33 pF
47 pF	33 pF to 68 pF	0 F to 68 pF
100 pF	68 pF to 150 pF	0 F to 150 pF
220 pF	150 pF to 330 pF	0 F to 330 pF
470 pF	330 pF to 680 pF	0 F to 680 pF
1 nF	680 pF to 1.5 nF	0 F to 1.5 nF

Table 10. Measurement accuracy

Measurement accuracy	The measurement accuracy is defined when all of the following conditions are met:
	 Warm-up time: 30 minutes or longer Ambient temperature: 18 °C to 28 °C Execution of OPEN Correction Execution of Cable Correction for 1 MHz measurement Measurement cable length: 0 m, 1 m, or 2 m (16048A/B/D)¹
Basic accuracy (typical)	 D (dissipation factor) ≤ 0.5 C: 0.042%, D: 0.0003
Accuracy of Cp, Cs, D, G, Rs, Q and Rp	 Tables 14 through 19 show the measurement accuracy of Cp, Cs, and D when D ≤ 0.1 Table 12 shows the formula of the measurement accuracy of G, Rs, Q and Rp when D ≤ 0.1 When 0.1 < D ≤ 0.5, multiply the accuracy obtained in Tables 14 through 19 by the coefficient in Table 11

¹ The outer conductor resistance of cable requires the following condition 16048A/B: 62 m Ω or below 16048D: 90 m Ω or below

Table 11. Dissipation factor coefficient

Parameter	Coefficient
Cp, Cs, G, Rs ¹	1 + D ²
D	1 + D

Table 12. Formula of the measurement accuracy of G, R_s, Q and R_p

Parameter	Formula
G _e (G accuracy)	$(C_e/100) \times 2 \times \pi \times f \times C_x$
R _{se} (R _s accuracy)	$(C_e/100) / (2 \times \pi \times f \times C_x)$
Q _e (Q accuracy)	$\frac{\pm QX^2 \times De}{1\mp QX \times De}$
R _{pe} (R _p accuracy)	$\frac{\pm Rpx^2 \times Ge}{1\mp Rpx \times Ge}$

C_e: Cp or Cs accuracy [%]

f: Measurement frequency [Hz]

C_x: Measurement value of Cp or Cs [F]

Qx: Measurement value of Q

 R_{px} : Measurement value of $Rp [\Omega]$

De: D accuracy [%]

Accuracy when ambient temperature exceeds the range of 18 to 28 °C (typical)

When the ambient temperature exceeds the range of 18 to 28 °C, multiply the accuracy obtained above by the coefficient shown in the table below.

Table 13. Temperature coefficient

	Coefficient
0 °C ≤ ambient temperature < 8 °C	3
8 °C ≤ ambient temperature < 18 °C	2
18 °C ≤ ambient temperature ≤ 28 °C	1
28 °C ≤ ambient temperature ≤ 38 °C	2
38 °C ≤ ambient temperature ≤ 45 °C	3

 $^{{\}bf 1} \ \ {\bf If} \ {\bf you} \ {\bf select} \ {\bf a} \ {\bf secondary} \ {\bf measurement} \ {\bf parameter} \ {\bf other} \ {\bf than} \ {\bf D}, \ {\bf calculate} \ {\bf D}$

Accuracy when an Alternative Current magnetic field is applied

When an alternating current magnetic field is applied to the instrument. Multiply the accuracy obtained in Tables 14 through 19.

 $1+B \times (2+0.5 \times K)$

B: Magnetic flux density [Gauss]

Cx: Measured value of the capacitance (Cp or Cs), Cr: A measurement range [F]

Vs: A measurement signal level [V].

In Tables 14 through 19, K is defined as follows:

 $Cx \le Cr$: $K = (1/Vs) \times (Cr/Cx)$

Cx > Cr: K = 1/Vs

where

Cx is measured value of the capacitance (Cp or Cs),

Cr is a measurement range and

Vs is a measurement signal level [V].

Measurement accuracy

Table 14. Measurement accuracy of Cp, Cs (measurement frequency: 120 Hz)

Cp, Cs [%]

Measurement time mode (N)	1	2	4	6	8
10 nF, 22 nF, 47 nF, 100 nF, 220 nF, 470 nF, 1 μF, 2.2 μF 4.7 μF, 10 μF, 22 μF, 47 μF, 100 μF	0.055 + 0.030 × K	0.055 + 0.022 × K	0.055 + 0.018 × K	0.055 + 0.016 × K	0.055 + 0.015 × K
220 μF, 470 μF, 1 mF	0.4 + 0.060 × K	0.4 + 0.044 × K	0.4 + 0.036 × K	0.4 + 0.032 × K	0.4 + 0.030 × K

Table 15. Measurement accuracy of D (measurement frequency: 120 Hz)

D

Measurement time mode (N)	1	2	4	6	8
10 nF, 22 nF, 47 nF, 100 nF, 220 nF, 470 nF, 1 μF, 2.2 μF, 4.7 μF, 10 μF, 22 μF, 47 μF, 100 μF	0.00035 + 0.00030 × K	0.00035 + 0.00022 × K	0.00035 + 0.00018 × K	0.00035 + 0.00016	0.00035 + 0.00015 × K
220 μF , 470 μF , 1 mF	0.004 + 0.00060 × K	0.004 + 0.00044 × K	0.004 + 0.00036 × K	0.004 + 0.00032 × K	0.004 +0.00030 × K

Table 16. Measurement accuracy of Cp, Cs (measurement frequency: 1 kHz)

Cp, Cs [%]

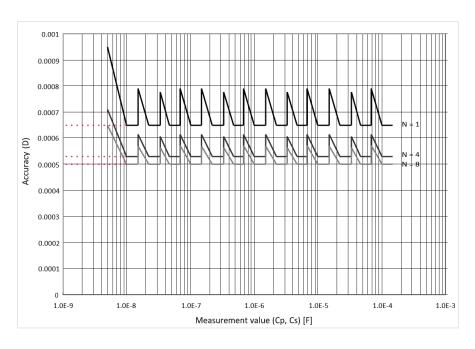
Measurement time mode (N)	1	2	4	6	8
100 pF	0.055 + 0.070 × K	0.055 + 0.047 × K	0.055 + 0.036 × K	0.055 + 0.033 × K	0.055 + 0.030 × K
220 pF	0.055 + 0.045 × K	0.055 + 0.032 × K	0.055 + 0.025 × K	0.055 + 0.022 × K	0.055 + 0.020 × K
470 pF, 1 nF, 2.2 nF, 4.7 nF, 10 nF, 22 nF, 47 nF, 100 nF, 220 nF, 470 nF, 1 μF, 2.2 μF, 4.7 μF, 10 μF	0.055 + 0.030 × K	0.055 + 0.022 × K	0.055 + 0.018 × K	0.055 + 0.016 × K	0.055 + 0.015 × K
22 μF, 47 μF, 100 μF	0.4 + 0.060 × K	0.4 + 0.044 × K	0.4 + 0.036 × K	0.4 + 0.032 × K	0.4 + 0.030 × K

Table 17. Measurement accuracy of D (measurement frequency: 1 kHz)

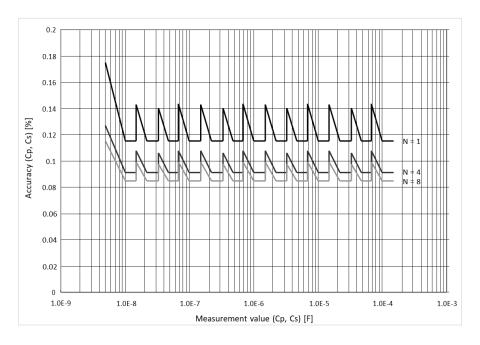
D

Measurement time mode (N)	1	2	4	6	8
100 pF	0.00035 + 0.00070 × K	0.00035 + 0.00047 × K	0.00035 + 0.00036 × K	0.00035 + 0.00033 × K	0.00035 + 0.00030 × K
220 pF	0.00035 + 0.00045 × K	0.00035 + 0.00032 × K	0.00035 + 0.00025 × K	0.00035 + 0.00022 × K	0.00035 + 0.00020 × K
470 pF, 1 nF, 2.2 nF, 4.7 nF, 10 nF, 22 nF, 47 nF, 100 nF, 220 nF, 470 nF, 1 μF, 2.2 μF, 4.7 μF, 10 μF	0.00035 + 0.00030 × K	0.00035 + 0.00022 × K	0.00035 + 0.00018 × K	0.00035 + 0.00016 × K	0.00035 + 0.00015 × K
22 μF, 47 μF, 100 μF	0.004 + 0.00060 × K	0.004 + 0.00044 × K	0.004 + 0.00036 × K	0.004 + 0.00032 × K	0.004 + 0.00030 × K

Table 18. Measurement accuracy of Cp, Cs (measurement frequency: 1 MHz, 1 MHz ± 1%, 1 MHz ±2%)


Cp, Cs [%]

Measurement time mode (N)	1	2	4	6	8
1 pF	0.055 + 0.070 × K	0.055 + 0.047 × K	0.055 + 0.036 × K	0.055 + 0.033 × K	0.055 + 0.030 × K
2.2 pF	0.055 + 0.045 × K	0.055 + 0.032 × K	0.055 + 0.025 × K	0.055 + 0.022 × K	0.055 + 0.020 × K
4.7 pF, 10 pF, 22 pF, 47 pF, 100 pF, 220 pF, 470 pF, 1 nF	0.055 + 0.030 × K	0.055 + 0.022 × K	0.055 + 0.018 × K	0.055 + 0.016 × K	0.0 55 + 0.015 × K


Table 19. Measurement accuracy of D (measurement frequency: 1 MHz, 1 MHz ± 1%, 1 MHz ± 2%)

D

Measurement time mode (N)	1	2	4	6	8
1 pF	0.00035 + 0.00070 ×	0.00035 + 0.00047 ×	0.00035 + 0.00036 ×	0.00035 + 0.00033 ×	0.00035 + 0.00030 ×
	K	K	K	K	K
2.2 pF	0.00035 + 0.00045 ×	0.00035 + 0.00032 ×	0.00035 + 0.00025 ×	0.00035 + 0.00022 ×	0.00035 + 0.00020 ×
	K	K	K	K	K
4.7 pF, 10 pF, 22 pF, 47 pF,	0.00035 + 0.00030 ×	0.00035 + 0.00022 ×	0.00035 + 0.00018 ×	0.00035 + 0.00016 ×	0.00035 + 0.00015 ×
100 pF, 220 pF, 470 pF, 1 nF	K	K	K	K	K

Figure 1. Accuracy of D when measurement frequency is 120 Hz (measurement range: 10 nF to 100 μ F / measurement signal level: 0.5 V)

Figure 2. Accuracy of Cp and Cs when measurement frequency is 120 Hz (measurement range: 10 nF to 100 μ F / measurement signal level: 0.5 V)

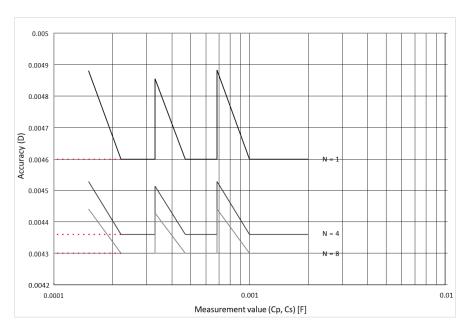


Figure 3. Accuracy of D when measurement frequency is 120 Hz (measurement range: 220 μ F to 1 mF / measurement signal level: 1 V)

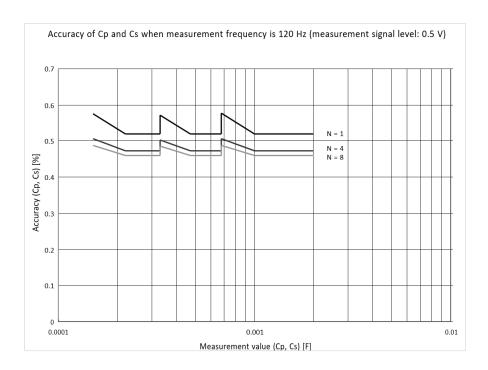
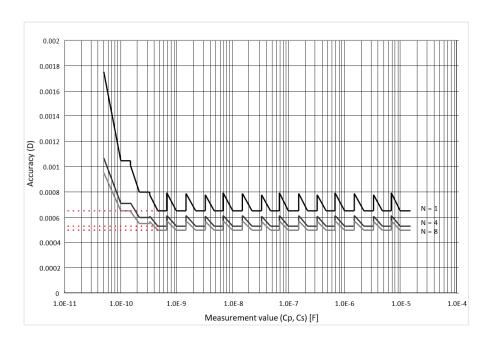
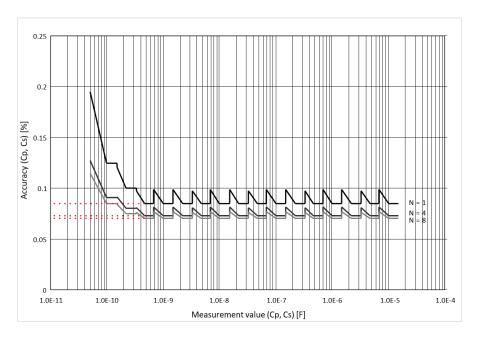




Figure 4. Accuracy of Cp and Cs when measurement frequency is 120 Hz (measurement range: 220 μF to 1 mF / measurement signal level: 1 V)

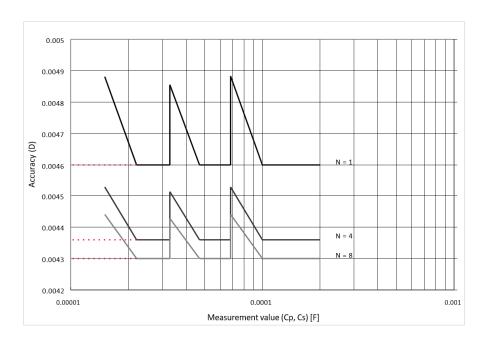


Figure 5. Accuracy of D when measurement frequency is 1 kHz (measurement range: 100 pF to 10 μ F / measurement signal level: 1 V)

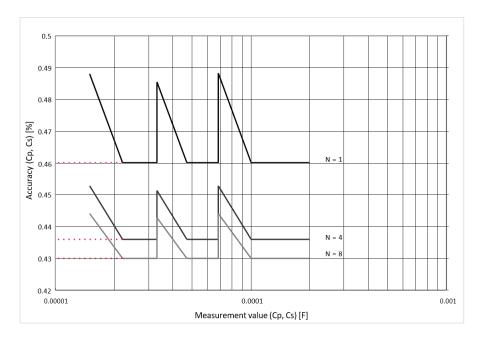


Figure 6. Accuracy of Cp and Cs when measurement frequency is 1 kHz (measurement range: 100 pF to 10 μ F / measurement signal level: 1 V)

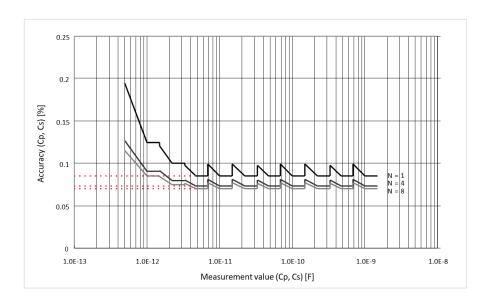


Figure 7. Accuracy of D when measurement frequency is 1 kHz (measurement range: $22 \mu F$ to $100 \mu F$ / measurement signal level: 1 V)

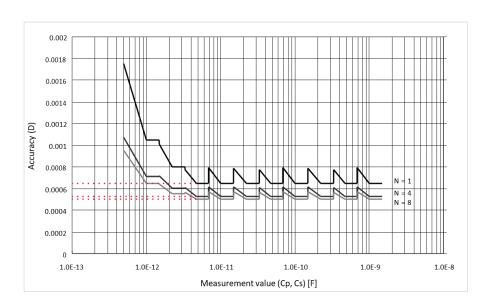


Figure 8. Accuracy of Cp and Cs when measurement frequency is 1 kHz (measurement range: 22 μ F to 100 μ F / measurement signal level: 1 V)

Figure 9. Accuracy of Cp and Cs when measurement frequency is 1 MHz (measurement signal level: 1 V)

Figure 10. Accuracy of D when measurement frequency is 1 MHz (measurement signal level: 1 V) Sample calculation of measurement accuracy is described at the end of the document.

Supplemental Information

Measurement signals

Table 20.

Outnut impadance	Francis 100 H-	CLC OFF (> 000 oF range) CLC ON	1 F O (nom)1
Output impedance	Frequency: 120 Hz	SLC OFF (≥ 220 µF range) SLC ON	1.5 Ω (nom.) ¹
		(≥ 220 µF range)	0.3 Ω (nom.) 1
		2.2 μF to 100 μF range 10 nF to 1 μF range	0.3 Ω (nom.) 1
			20 Ω (nom.) 1
	Frequency: 1 kHz	SLC OFF (≥ 22 µF range) SLC ON	1.5 Ω (nom.) ¹
		(≥ 22 μF range) 220 nF to 10 μF range	0.5 Ω (nom.) ¹
		100 pF to 100 nF range	0.3 Ω (nom.) 1
			20 Ω (nom.) 1
	Frequency: 1 MHz / 1 MHz ± 2% / 1 MHz ± 1%		20 Ω (nom.) ¹

Measurement time

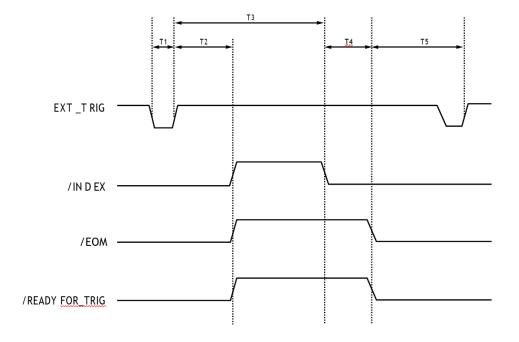


Figure 11. Timing chart and measurement time

¹ This value is defined without an extension cable.

16

Table 21 shows the values of T1 – T5 when the following conditions are met:

• Display update: Off

• Synchronous source: On

• Measurement range mode: Hold range mode (Hold)

Source delay time: 0 msTrigger delay time: 0 ms

· Averaging factor: 1

• SLC: Off

Measurement time mode (N): 1

• Correction: On

Multi connection: OnLAN: Not connected

Table 21. Values of T1 – T5 (typical)

		Measurement frequency	Minimum value	Typical value
T1 Trigger pulse width		N/A	1 μs	-
T2 Trigger response time of /READY_FOR_TRIG, /INDEX and /EOM		N/A	-	40 µs
(T3 + T4) Measurement time	T3 Analog measurement time	120 Hz 1 kHz 1 MHz	- - -	10.0 ms 2.0 ms 1.3 ms
(T3 + T4) Measurement time	T4 Measurement computation time	N/A	-	1.0 ms
T5 Trigger wait time		N/A	0 μSec	-

Display time

Except in the case of the DISPLAY BLANK page, the time required to update the display on each page (display time) is as follows (Table 22). When the screen is changed, drawing time and switching time are added. The measurement display is updated about every 100 ms.

Table 22. Display time

Item	Time
MEAS DISPLAY page drawing time	10 ms
MEAS DISPLAY page (large) drawing time	10 ms
BIN No. DISPLAY page drawing time	10 ms
BIN COUNT DISPLAY page drawing time	10 ms
Measurement display switching time	35 ms

Table 23 shows the measurement time (T3 + T4) for each measurement time mode.

Table 23. Measurement time

Frequency	Measurement time [ms]
120 Hz	(N × 8.3 × Ave + 2.7) ± 0.5
1 kHz	$(N \times 1.0 \times Ave + 2.0) \pm 0.5$
1 MHz / 1 MHz ± 1% / 1 MHz ± 2%	$(N \times 1.0 \times (100/(100 + Fshift)) \times Ave + 1.3) \pm 0.5$

Measurement time mode (N) = 1, 2, 4, 6, 8

Ave: Averaging factor

Fshift: Frequency shift setting

Measurement data transfer time

Table 24 shows the measurement data transfer time under the following conditions. The measurement transfer time varies with the measurement conditions and computer used.

Host computer: HP Z440 Workstation, Intel Xeon CPU E5-1620 v3 @ 3.50 GHz/Windows 10

USB GPIB Interface Card: Keysight Technologies 82351B PCI Express GPIB

Display: ON

• Measurement range mode: Hold range mode (Hold)

OPEN/SHORT/LOAD correction: OFFMeasurement signal monitor: OFF

. BIN count function: OFF

Table 24. Measurement data transfer time (typical)

Interface	Data transfer format	Using: FETC? command (one point measurement)		Using: READ command (one point measurement)		Using data buffer memory (1000 measurement points (BUFFER3))	
		Comparator ON [ms]	Comparator OFF [ms]	Comparator ON [ms]	Comparator OFF [ms]	Comparator ON [ms]	Comparator OFF [ms]
GPIB	ASCII	1	1	2	2	280	250
	ASCII Long	1	1	2	2	340	316
	Binary	2	2	2	2	112	83
USB	ASCII	1	1	2	2	12	11
	ASCII Long	1	1	2	2	14	13
	Binary	1	1	5	5	4	4
LAN	ASCII	6	6	7	7	20	20
	ASCII Long	6	6	7	7	20	20
	Binary	12	12	13	13	15	15

Measurement Assistance Functions

Table 25.

Measurement assistance functions

Correction function	OPEN/SHORT/LOAD correction are available The OFFSET correction is available
MULTI correction function	 OPEN/SHORT/LOAD correction for 256 channels The LOAD correction standard value can be defined for each channel
Cable correction function	Cable Correction is available
Deviation measurement function	Deviation from reference value and percentage of deviation from the reference value can be outputted as the result
Comparator function	 BIN sort: The primary parameter can be sorted into 9 BINs, OUT_OF_BINS, AUX_BIN, and LOWC_OR_NC. The secondary parameter can be sorted into High, In, and Low. Limit setup: An absolute value, deviation value, and % deviation value can be used for setup Bin count: Countable from 0 to 999999
Low C reject function	Extremely low measured capacitance values can be automatically detected as measurement errors
Contact check function	The contact check function is available on 120 Hz and 1 kHz
Single level compensation	 SLC function compensates the voltage drop by the resistance inside the E4981B and the extension cable under the following frequencies and ranges Measurement cable: 16048A or 16048D When the measurement frequency is 120 Hz: 220 µF range, 470 µF range, 1 mF range When the measurement frequency is 1 kHz: 22 µF range, 47 µF range, 100 µF range

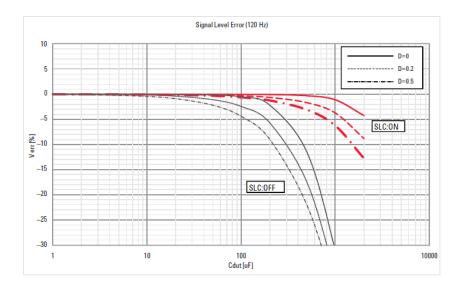


Figure 12.

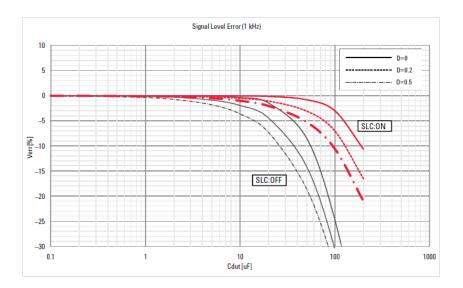


Figure 13.

Table 26.

Measurement assistance functions

Measurement signal level monitor function	 Measurement voltage and measurement current can be monitored Level monitor accuracy (typical): ± (3% + 1 mV) 		
Data buffer function	Up to 1000 measurement results can be read out in batch		
Save/recall function	 Up to 10 setup conditions can be written to/read from the built-in nonvolatile memory Up to 10 setup conditions can be written to/read from the external USB memory Auto recall function can be performed when the setting conditions are written to Register 9 in the built-in non-volatile memory 		
Key lock function	The front panel keys can be locked		
GPIB interface	Complies with IEEE488.1, 2 and SCPI		
USB host port	Universal serial bus jack, type-A (4 contact positions, contact 1 is on your left); female; for connection to USB memory device only Note: The following USB memory can be used. Complies with USB 2.0; mass storage class, FAT32, NFTS format; maximum consumption current is below 500 mA Use the prepared USB memory device exclusively for the E4981B; otherwise, other previously saved data may be cleared. If you use a USB memory other than the recommended device, data may not be saved or recalled normally. Keysight will NOT be responsible for data loss in the USB memory caused by using the E4981B		
USB interface port	 Universal serial bus jack, type mini-B (4 contact positions); complies with USBTMC-USB488 and USB 2.0; female; for connection to the external controller. USBTMC: Abbreviation for USB Test & Measurement Class 		
LAN interface	 10/100/1000 BaseT Ethernet, 8 pins; two speed options Compliant with LXI standard (LAN eXtensions for Instrumentation): LXI 1.5 Device Specification 2016 Auto MDIX 		
Handler interface	The input/output signals are negative logic and optically isolated open collector signals Output signal: Bin1–Bin9, Out of Bins, Aux Bin, P-Hi, P-Lo, S-Reject, INDEX, EOM, Alarm, OVLD, Low C Reject or No Contact, Ready For Trigger Input signal: Keylock, Ext-Trigger		
Scanner interface	The input/output signals are negative logic and optically isolated open collector signals Output signal: INDEX, EOM Input signal: Ch0 – Ch7, Ch valid, Ext-Trigger		
Measurement circuit protection	connected to the UNKNOWN terminal, is illustra NOTE: Discharge capacitors before connecting Maximum discharge withstand voltage (typical) Maximum discharge withstand voltage 1000 V	them to the UNKNOWN terminal or a test fixture. Range of capacitance value C of DUT $C < 2~\mu\text{F}$	
	√2/C V	C ≥ 2 µF	

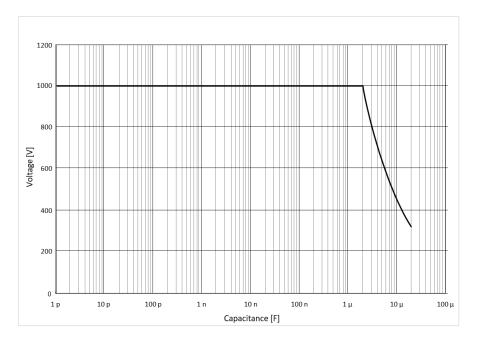


Figure 14. Maximum discharge withstands voltage (typical)

General Specifications

Table 27.

Power source

Rated voltage	115 - 230 VAC
Voltage range	90 – 264 VAC
Rated frequency	50 / 60 Hz
Frequency range	47 – 63 Hz
Power consumption	Maximum 150 VA

Table 28.

Operating environment

Temperature	0 °C to 45 °C
Humidity (≤ 40 °C, no condensation)	15% to 85% RH
Altitude	0 m to 2000 m

Table 29.

Storage environment

Temperature	−20 °C to 70 °C	
Humidity (≤ 65 °C, no condensation)	0% to 90% RH	
Altitude	0 m to 4572 m	

Table 30.

Other

Weight	4.3 kg (nominal)
Display	LCD, 320 x 240 (pixel), RGB color
Outer dimensions	370 (width) x 105 (height) x 405 (depth) mm (nominal)

Note: Effective pixels are more than 99.99%. There may be 0.01% or smaller missing pixels or constantly lit pixels, but this is not a malfunction.

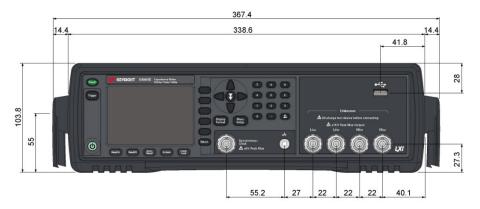


Figure 15. Dimensions (front view, with handle and bumper, in millimeters, nominal)

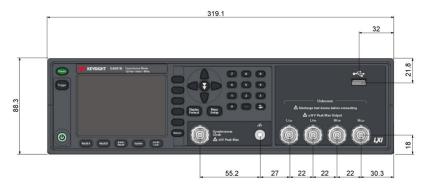


Figure 16. Dimensions (front view, without handle and bumper, in millimeters, nominal)

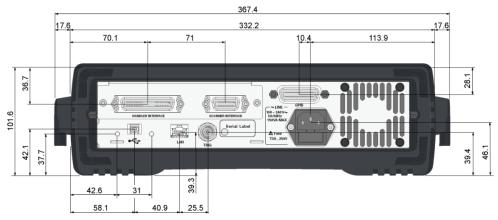


Figure 17. Dimensions (rear view, with handle and bumper, in millimeters, nominal)

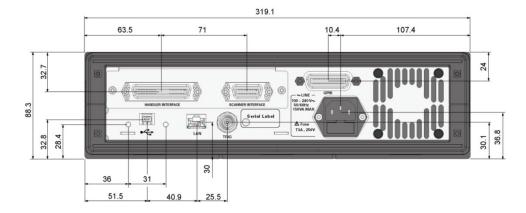


Figure 18. Dimensions (rear view, without handle and bumper, in millimeters, nominal)

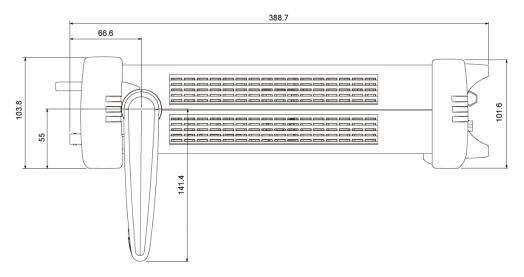


Figure 19. Dimensions (side view, with handle and bumper, in millimeters, nominal)

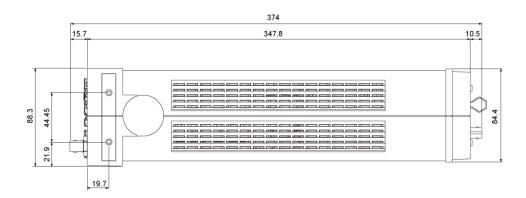


Figure 20. Dimensions (side view, without handle and bumper, in millimeters, nominal)

EMC, Safety, Environment and Compliance

Table 31.

EMC¹

Description	Specification
Complies with the essential recthe Declaration of Conformity).	quirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in
CE ISM 1-A	The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives. – IEC 61326-1 – CISPR 11 Group 1, Class A
UK CA	UK conformity mark is a UK government owned mark. When affixed to the product is declaring all applicable Directives and Regulations have been met in full.
CAN ICES/NMB-001(A)	This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB du Canada.
	The RCM mark is a registered trademark of the Australian Communications and Media Authority. – AS/NZS CISPR 11
C	South Korean Certification (KC) mark; includes the marking's identifier code: R-R-Kst-xxxxxxx South Korean Class A EMC declaration: Information to the user: This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference. This EMC statement applies to the equipment only for use in business environment.
2	사 용 자 안 내 문 이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서
	가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다. ※ 사용자 안내문은 "업무용 방송통신기자재"에만 적용한다.

Table 32.

Safety1

Description	Specification
Complies with the essen	tial requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are
	I for use in INSTALLATION CATEGORY II and POLLUTION DEGREE 2 and MEASUREMENT CATEGORY NONE per IEC standards.
CE ISM 1-A	IEC 61010-1
⊕ ®	The CSA mark is a registered trademark of the CSA International. – Canada: CSA C22.2 No. 610610-1 – USA: UL std no. 61010-1

¹ To find a current Declaration of Conformity for a specific Keysight product, go to: http://www.keysight.com/go/conformity.

Table 33.

Environment

WEEE

The crossed out wheeled bin symbol indicates that separate collection for waste electric and electronic equipment (WEEE) is required, as obligated by DIRECTIVE 2012/19/EU.

Please refer to about.keysight.com/en/companyinfo/environment/takeback.shtml to understand your Trade in options with Keysight in addition to product takeback instructions.

Sample Calculation of Measurement Accuracy

This section describes an example for calculating the measurement accuracy of each measurement parameter, assuming the following measurement conditions.

Sample

Measurement signal frequency: 1 kHz

Measurement signal level: 0.5 V

Measurement range: 10 nF

Measurement time mode: N = 1

• Ambient temperature: 28 °C

When measurement parameter is Cp-D (or Cs-D)

The following is an example for calculating the accuracy of Cp (or Cs) and D, assuming that measured result of Cp (or Cs) is 8.00000 nF and measured result of D is 0.01000.

From Table 16, the equation to calculate the accuracy of Cp (or Cs) is $0.055 + 0.030 \times K$ and the equation to calculate the accuracy of D is $0.00035 + 0.00030 \times K$

The measurement signal level is 0.5, the measurement range is 10 nF, and the measured result of Cp (or Cs) is 8.00000 nF. Therefore, $K = (1/0.5) \times (10/8.00000) = 2.5$

Substitute this result into the equation. As a result, the accuracy of Cp (or Cs) is $0.055 + 0.030 \times 2.5 = 0.13\%$ and the accuracy of D is $0.00035 + 0.00030 \times 2.5 = 0.0011$

Therefore, the true Cp (or Cs) value exists within $8.00000 \pm (8.00000 \times 0.13/100) = 8.00000 \pm 0.0104$ nF that is, 7.9896 nF to 8.0104 nF and the true D value exists within 0.01000 ± 0.0011 that is, 0.0089 to 0.0111

When measurement parameter is Cp-Q (or Cs-Q)

The following is an example for calculating the accuracy of Cp (or Cs) and Q, assuming that measured result of Cp (or Cs) is 8.00000 nF and measured result of Q is 20.0.

The accuracy of Cp (or Cs) is the same as that in the example of Cp-D. From Table 17, the equation to calculate the accuracy of D is $0.00035 + 0.00030 \times K$

Substitute K = 2.5 (same as Cp-D) into this equation.

The accuracy of D is $0.00035 + 0.00030 \times 2.5 = 0.0011$

Then, substitute the obtained D accuracy into equation in Table 12.

The accuracy of Q is $\pm (20.0)^2 \times 0.0011/(1 \mp 20.0 \times 0.0011) = \pm 0.44/(1 \mp 0.022)$ that is, -0.43 to 0.45

Therefore, the true Q value exists within the range of 19.57 to 20.45

When measurement parameter is Cp-G

The following is an example for calculating the accuracy of Cp and G, assuming that measured result of Cp is 8.00000 nF and measured result of G is 1.00000 μ S. The accuracy of Cp is the same as that in the example of Cp-D.

From Table 12, the equation to calculate the accuracy of G is $(C_e/100) \times 2 \times \pi \times f \times C_x$

Substitute C_e = 0.13% (same as Cp-D) and C_x = 8.00000 nF of the measured Cp result into this equation. The accuracy of G is $(0.13/100) \times 2 \times \pi \times 1 \times 10^3 \times 8 \times 10^{-9} = 65.35$ nS $(0.065 \,\mu\text{S})$

Therefore, the true G value exists within 1.00000 ±0.065 µS that is, 0.935 µS to 1.065 µS

When measurement parameter is Cp-Rp

The following is an example for calculating the accuracy of Cp and Rp, assuming that measured result of Cp is 8.00000 nF and measured result of Rp is 2.00000 M Ω .

The accuracy of Cp is the same as that in the example of Cp-D. From Table 12 the equation to calculate the accuracy of Rp is

$$\frac{\pm Rpx^2 \times Ge}{1 \mp Rpx \times Ge}$$

Substitute Rpx = $2.00000 \text{ M}\Omega$ of the measured Rp result into this equation.

The accuracy of G is $(0.13/100) \times 2 \times \pi \times 1 \times 10^3 \times 8 \times 10^{-9} = 65.35 \text{ nS} (0.065 \mu\text{S})$

Then, substitute the obtained G accuracy into 1st Equation. The accuracy of Rp is

$$\frac{\pm 2M^2 \times 0.065 \mu}{1 \mp 2M \times 0.065 \mu}$$

that is, $-0.23009~\text{M}\Omega$ to $0.29885~\text{M}\Omega$

Therefore, the true Rp value exists within 1.76991 M Ω to 2.29885 M Ω

When measurement parameter is Cs-Rs

The following is an example for calculating the accuracy of Cs and Rs, assuming that measured result of Cs is 8.00000 nF and measured result of Rs is 4.00000 k Ω . Because the Cs accuracy is

$$D = 2 \times \pi \times Freq \times Cs \times Rs = 2 \times \pi \times 1 \times 10^{3} \times 8 \times 10^{-9} \times 4 \times 10^{3} = 0.2 (0.1 < D \le 0.5)$$

multiply 0.13% (the result obtained for Cs-D) by $1 + D^2$.

The result is $0.13 \times (1 + 0.04) = 0.1352\%$

From Table 12 the equation to calculate the accuracy of Rs is $(C_e/100)$ / $(2 \times \pi \times f \times C_x)$

Substitute $C_e = 0.1352\%$ (Cs accuracy calculated above) and $C_x = 8.00000$ nF of the measured Cs result into this equation. The accuracy of Rs is

$$(0.1352/100) / (2 \times \pi \times 1 \times 10^{3} \times 8 \times 10^{-9}) = 26.897$$

Because (0.1 < D \leq 0.5), multiply the result by 1 + D² similar as in the case of Cs.

The final result is 27.97Ω .

Therefore, the true Cs value exists within

 $8.00000 \pm (8.00000 \times 0.1352/100) = 8.00000 \pm 0.01082$ nF that is,

7.98918 nF to 8.01082 nF and the true Rs value exists within 4.00000 \pm 0.02797 k Ω that is,

3.97203 to 4.02797 k Ω

www.keysight.com/find/E4981B

